Into: learn:
basics & boolean logic
about "programmable logic"
about "programmable logic" what is a field Programmable Gate Array (FPGA) Program FPGA
Λ
use Raspherry li computer lassume you
connect PPGA to PPi know Fython)
use Raspherry Pi computer (assume you connect FPGA to RPi know Fython) voiva => cheap and powerfu DAD system
Venn diagnams: good way to visualize logic
John Venn 1834-1923
wrote "The Logic of Chance" 1866, modern probabilit
"The Vaiverse" T
Any member in universe can be in A, B, both, neither

B Now let A & B intersect

ex: A = set of republicans in the universe B = set of women in universe then C = set of women who are also republicans so C = A "and" B can be written w/ symbols: C= ANB N= "intersection" c = A&R & = "and" $C = A \cdot B$ = "and shorthand: C=AB (is implicit) Next let D= set of elements who are either women or republicans D=AUB U= "union" = A / B / = "or" = A + B + = "or"

Next let E= elements who are either rep or women but not both

Bayesian statistics

probability that an element is

What is "conditional probability" that

any Pisako a GOP?
denoted P(BIA) "prob & GDP given ?"
ABE GOPSQ A Q also, prob that any GOP is also a female? P(AIB) = A.B B
then write A.B = BP(AIB) = AP(BIA) divide by D: B.P(AIB) = AP(BIA) P(B) P(B) P(A) This gives us Bayes thm (understanding probabilities
this gives us Bayes thm/ (understanding probabilities P(AIR) = P(RIA) whom given prior P(A) P(R) in formation) Rev. Thomas Bayes, 1701-1761

Boolean algebra George Boole 1875-1861

whole "Lawe of Thought" 1854

lays out the algebra of reasoning!

as above: $A+B=(A\cdot B)+(A\oplus B)$

algebra's have properties: For Boolean!

Commutative

A+B=B+A & A·B=B·A

Distributave

 $A + (B+C) = (A+B)+C \quad \text{?} \quad A \cdot (B \cdot C) = (A \cdot B) \cdot C$ $= A+B+C \quad = A \cdot B \cdot C$

Associative

$$A + (B \cdot C) = (A + B) \cdot (A + C)$$

 $A \cdot (B + C) = (A \cdot 73) + (A \cdot C)$

easy to prove using Venn diagrams

 $A+(B\cdot C)=(A+B)\cdot (A+C)$ first do $A+(B\cdot C)$

A+ (B·C)

A+B

A+C

|S| = |A|

Properties can be use [ul simplifying. eg! $D = (A \cdot B) + (B + C) \cdot (B \cdot C) = (A \cdot B) + B \cdot (B \cdot C) + C(B \cdot C)$ then B.B.C=B.C=B.C

C.(B.C) = C.B.C=B.C

SO D= A·B+BC+B·C=A·B+B·C = BA+BC = B.(A+c)

Digital representation

GATES:

AND Gate $C=A\cdot B$ A=DOR " D=A+B A=DXOP " E=ABB A=DNOT " F=A A=DF

TRUTH TABLE:

AB	AR	A+B	AOB	Ā	B
00	0001	0	00	90	1010

can prove distributive property using truth tables Prove A. (B+c)=(A,B)+(A.c)

Network Boates

ek!

NY:

they are the same (have same output)

Boolean properties | gates involution: $\overline{A} = A$ double inversion

idempotency: A+A=A : A·A=A

 $A + \overline{A} = I$ A + O = A

 $A \cdot \overline{A} = 0$ $A \cdot 1 = A$

absorption: $A + (A \cdot B) = (A + A) \cdot (A + B) = A \cdot (A + B)$ $= (A \cdot A) + (A \cdot B) = A + A \cdot B = A$

Venn makes it easy:

if you then take A+* you get A

De Morgan's thun

(August DeMorgan, 1805-1871)

AAB =

not in (A or B)

not in (A or B) means not A and not B = A.B

SO A+B = A·B DeM's theorem

we use it to regating

take gate, negate all inputs & outputs, and swap AND > OP DeM's thy:

so $\overline{A \cdot B} = \overline{A} + \overline{B}$

ex for using DeM's thm:

 $A \oplus B = (A + B) \cdot (\overline{A \cdot B})$

Hod ton Bro A

= (A+B). (Ā+B) DeM

= A.(A+B) + B.(A+B)

 $= A \cdot \overline{A} + A \cdot \overline{B} + B \cdot \overline{A} + B \cdot \overline{B}$

= A.B.+ B.A

let's drop the and write ADB = AB+BA
(* implicit)