Into: learn:
basics of boolean logic about "programmable logic"
what is a Field Propanmable Gate Array (EPOA) program FPGA
use Raspberry P_{i} computer (assume you connect FPGA to RPM know Python)
voila \Rightarrow cheap and powerfa|DAQ system
Venn diagrams: good way to visualize logic John Ven $1834-1923$
wrote "The loge of Chance" 1866, modern probability

Venn diagrams (1880)

Any member in universe can be in A, B, both, neither

Now let $A \subseteq B$ intersect
ex: $A=$ set B republicans in the universe
$B=$ set of women in universe
then $C=$ set of women who arc also republicans so $C=A$ "and" B can be written w/symbals:

$$
\begin{array}{ll}
C=A \cap B & \Lambda=\text { "intersection" } \\
C=A \& B & \&=\text { "and" } \\
C=A \cdot B & =\text { "and }
\end{array}
$$

shorthand: $C=A B$ (• is implicit)
Next let $D=\operatorname{set}$ of elements who are either women or republicans

$$
\begin{array}{rlrl}
D & =A \cup B & U & =\text { "union" } \\
& =A \mid B & 1=\text { "or" } \\
& =A+B & t & =\text { "or" }
\end{array}
$$

Next let $E=$ elements who are either rep or women but not both

$$
\begin{aligned}
E & =\text { "exclusives or" of } A_{,} B \\
& =A \oplus B \quad \oplus=\text { "exclusive or" }
\end{aligned}
$$

so we have $C=A \cdot B$

$$
\begin{aligned}
& D=A+B \\
& \Gamma=A B R \quad \text { "or" }
\end{aligned}
$$

then we can white $D=C+E$

$$
\therefore A+B=A \cdot B+A \oplus B
$$

Bayesian statistics
probability that an element is $P(G O P) \equiv P(A)=\frac{A}{\bar{U}}$ ratio of areas interpreted as a probability

$$
\begin{aligned}
& P(O)=P(B)=\frac{B}{V} \\
& P(\text { female and } G O P)=\frac{A \cdot B}{V}
\end{aligned}
$$

What is "conditional probability" that
any O is also a GOP? denoted $P(B \mid A)$ "prob if gop given O"

$$
P(B \mid A)=\frac{A \cdot B}{A}=\frac{\operatorname{GOP} \& O}{O}
$$

also, prob that any Gop is abs a female?

$$
P(A \mid B)=\frac{A \cdot B}{B}
$$

then write $A \cdot B=B P(A \mid B)=A P(B \mid A)$

$$
\text { divide by } \bar{U}: \frac{\underset{\sim}{U}}{\underset{P(B)}{\sim}} \cdot P(A \mid B)=\frac{A}{\boxed{V}} P(B \mid A)
$$

this gives us Bayes the (understanding probabilities

$$
\frac{P(A \mid B)}{P(A)}=\frac{P(B(A)}{P(B)} \quad \text { when given prior }
$$

Rev. Thomas Bayes, 1701-1761

Boolean alga be George Boole 1815-186t wrote "Law of Thought" 1854 lays out the algebra of reassuring!
as above: $A+B=(A \cdot B)+(A \oplus B)$
algebra's have properties: For Boolean:
Commutative

$$
A+B=B+A \quad A \cdot B=B \cdot A
$$

Distibutave

$$
\begin{aligned}
A+(B+C) & =(A+B)+C & \varepsilon & A \cdot(B \cdot C)
\end{aligned}=(A \cdot B) \cdot C
$$

Associative

$$
\begin{aligned}
& A+(B \cdot C)=(A+B) \cdot(A+C) \\
& A \cdot(B+C)=(A \cdot B)+(A \cdot C)
\end{aligned}
$$

easy to prove using Ven diagrams

$$
A+(B \cdot C)=(A+B) \cdot(A+C)
$$

first do $A+(B \cdot C)$

$A+B$
$A+C$

Properties can be use pul simplifying. eg:

$$
\begin{gathered}
D=(A \cdot B)+(B+C) \cdot(B \cdot C)=(A \cdot B)+B \cdot(B \cdot C)+C(B \cdot C) \\
\text { then } B \cdot B \cdot C)=B \cdot B \cdot C=B \cdot C \\
C \cdot(B \cdot C)=C \cdot B \cdot C=B \cdot C \\
\text { so } D=A \cdot B+B \cdot C+B \cdot C=A \cdot B+B \cdot C=B \cdot A+B \cdot C \\
=B \cdot(A+C)
\end{gathered}
$$

Digital representation
GATES:

AND Gate $C=A \cdot B$ B
OR " $D=A+B_{B}^{A} \Longrightarrow D$
XOR " $\left.E=A \oplus B \frac{A}{B}\right)-E$
NOT: $F=\bar{A}$ A DoL
TRUTH TABLE:

A	B	$A \cdot B$	$A+B$	$A \oplus B$	\bar{A}	\vec{B}
0	0	0	0	0	1	1
0	1	0	1	1	1	0
1	0	0	1	1	0	1
1	1	1	1	0	0	0

can prove disticbutive property vising truth tables prove $A \cdot(B+C)=(A \cdot B)+(A \cdot C)$

$A B C$	$B+C$	$A \cdot(B+C)$	$A \cdot B$	$A \cdot C$	$(A \cdot B)+(A \cdot C)$		
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	0	0	0	0	
1	0	0	0	0	0	0	0
1	0	1	1	1	0	0	0
1	1	0	1	1	1	1	1
1	1	1	1	1	1	1	1

Network Ap gates
ex: $A B C$

ex:

they are the same (have same output)
Boolean properties of gates
involution: $\overline{\bar{A}}=A$ double inversion
idempotency:

$$
\begin{array}{ll}
A+A=A & A \cdot A>A \\
A+\bar{A}=1 & A+0=A \\
A \cdot \bar{A}=0 & A \cdot 1=A
\end{array}
$$

absorption:

$$
\begin{aligned}
A+(A \cdot B) & =(A+A) \cdot(A+B)=A \cdot(A+B) \\
& =(A \cdot A)+(A \cdot B)=A+A \cdot B=A!
\end{aligned}
$$

Ven makes it easy:
if you then take $A+$ you get A
De Morgan's the (August DeMorgan, 1886-1871)

$$
\begin{aligned}
& A+B=\infty \quad \text { not in }(A \text { or } B) \\
& \overline{A+B}=\infty \quad
\end{aligned}
$$

not in (A or B) means not A and not $B=\bar{A} \cdot \vec{B}$ so $\overline{A+B}=\bar{A} \cdot \bar{B}$ DeM's theorem we use it for negating

DeM's th w: take gate, negate all inputs: outputs, and swap $A N D \Leftrightarrow O R$

$$
\text { so } \overline{A \cdot B}=\bar{A}+\bar{B}
$$

ex for using DeM's thu:

$$
\begin{aligned}
A \oplus B= & (A+B) \cdot(\bar{A} \cdot \bar{B}) \\
& A \text { or } B \text { not both } \\
= & (A+B) \cdot(\bar{A}+\bar{B}) \text { DeM } \\
= & A \cdot(\bar{A}+\bar{B})+\bar{B} \cdot(\bar{A}+\bar{B}) \\
= & A \cdot \bar{A}+A \cdot \bar{B}+B \cdot \bar{A}+B \cdot \bar{B} \\
= & A \cdot \bar{B}+B \cdot \bar{A}
\end{aligned}
$$

let's drop the - and write $A \oplus B=A \bar{B}+B \bar{A}$ (implicit)

